RiskTech Forum

Wolters Kluwer: How AI Has The Potential To Transform Regulatory Compliance

Posted: 14 September 2016  |  Source: Wolters Kluwer

Most people have heard of the headline-making achievements in Artificial Intelligence; systems winning quiz shows and beating world champions in chess and Go. These are the poster children of the discipline but there is a quieter revolution taking in shape in other areas, including Regulatory Compliance in Financial Services, where AI technologies are promising to transform the way that firms ensure they can comply with a global explosion of new regulation..

The problem with regulation
Looked at in isolation, a regulation is a relatively simple affair, a legal document containing text that describes what needs to be done, by whom, when, and (sometimes) how. With some understanding of the underlying topic, a compliance officer can read the document; understand what is mandated and where it will affect his or her part of the organization.

He can determine what is required in order to ensure compliance, what is required and how to demonstrate that compliance is met, not only to his management but also to the regulator. Of course things just aren’t that simple, this approach doesn’t scale easily and yet the scale and scope both of regulations and of the businesses of firms themselves continues to grow apace. In the real world, firms struggle to understand what legal and regulatory requirements they face everywhere they do business. Inevitably, they struggle to ensure compliance everywhere and are unable to demonstrate it to management and regulators, resulting in compliance failures, regulatory fines and, increasingly, personal legal sanctions for their management.

The problem is that, for each legal or regulatory text, someone has to read it, analyze it, understand the impact on their organization, and then undertake and manage whatever actions are needed to ensure compliance. This task is multiplied for each regulation issued by each regulator, in each jurisdiction and for every line of business. As markets, and ultimately firms, are evolving, they can end up having to comply with thousands of regulations from dozens of regulators. Even if this mammoth task is achieved that is not the end of it: Regulations change, their interpretation changes, and of course the firm itself changes. Firms have to keep up with all of this change. A medium-sized firm may have to scan hundreds of updates every week, identifying which ones affect regulations that contain requirements that affect them and then deciding what, if any, action is required in order to ensure continuing compliance. And the broader the business and product offering, the more complex the regulatory landscape they have to adhere to, becomes.

This is a process that cries out for automation but both the regulations and the updates to them are in the form of unstructured documents that have to be read, interpreted and contextualized by skilled and experienced staff.

The promise of AI

Linking these processes to another AI technology, like machine learning, means that we can train systems to get better at these tasks, further increasing their utility.

How will this transform Regulatory Compliance?
Enriched content is valuable simply in enabling existing tasks, making them easier and faster but how can it transform compliance?

Once we can treat regulatory content as data it becomes possible to manage it programmatically and this opens up a range of new opportunities. Regulations themselves and the obligations within them can be represented in systems and linked to the relevant parts of the business automatically using metadata e.g. UK requirements around mortgage advertising can be tagged appropriately and assigned automatically to the UK Mortgage Sales department that shares the same metadata. At the same time updates to those rules or their interpretation come into the system as an XML feed and can be routed directly to the same team with no human intervention, using the same metadata and the rules that are referred to in the updates.

What was once a static environment becomes dynamic as the process of identifying and mapping regulatory requirements across the business is automated. Firms can start to ask questions and make comparisons: e.g. how do the requirements around mortgage advertising in the UK compare with the rest of the EU or with the US? The answers to these questions help firms not just to ensure that they comply but to make regulation a more central part of their business decisions. For example, Regulatory Requirements can be linked to Controls in a library that has costs associated with each Control. Now it becomes possible to look at and compare the cost of complying with regulations in each part of the business.

Finally, the newly acquired data around Regulatory Compliance can be brought into the risk environment. For example, enforcement and disciplinary actions and their resulting sanctions can be linked to specific rules and regulatory topics, giving firms a picture of the potential cost associated with non-compliance. Putting this information together with control performance and effectiveness data provides the fundamental information required to take a genuinely risk-based view of Regulatory Compliance.